
CONCEPTOS BÁSICOS DE POO

VARIABLES

¿Qué es una variable?

Una variable es un elemento que contiene información (datos) que puede ser
ejecutada por el código.
Las variables sirven para guardar información que será utilizada
posteriormente.
Cada variable tiene un tipo de datos (número, cadena, fecha…)
Javascript es un lenguaje implícito por lo que no necesita especificar
previamente el tipo de dato que contiene una variable.
Las variables pueden cambiar de tipo de dato, pero no es recomendable.

En este ejemplo (JsFidle) o Codepen x se define como una variable. Luego,
asignamos a x el valor de 6:

Ejercicio

Sobre el ejemplo de creación de variable anterior, modifícalo para:

Declarar e inicializar la variable x en el mismo paso1.
Declara otra variable, y, e inicialízala con una cadena (string)2.
Crea un encabezado de segundo nivel (h2) debajo del párrafo y haz que se3.
muestre la nueva variable en él

Solución JSFidle – Codepen

Explicación: 1. Creamos un h2 vacío con un id 2. Declaramos la variable y y le
damos un valor como string 3. Sobre el objeto document, aplicamos el método
getElementByID() para capturar el id del h2, y le pasamos con innerHTML el valor
de la variable y

Ejercicio

Abre el siguiente ejercicio (JSFidle) o Codepen que usa variables con datos
numéricos y modifícalo para incluir el IVA en el precio total:

Crea un nuevo <p> con id subtotal1.
Declarar una tercera variable llamada IVA e inicializarla con el valor 1.212.
A la variable total llámala subtotal3.
Crea una nueva variable total que multiplique subtotal por iva4.

https://jsfiddle.net/gertrudix/2gqf548z/
https://codepen.io/gertrudix/pen/NPxXEPa
https://jsfiddle.net/gertrudix/7d7rwezr/2/
https://codepen.io/gertrudix/pen/JoGMeoQ
https://jsfiddle.net/gertrudix/orbmt32f/
https://codepen.io/gertrudix/pen/wBMpQae

Utiliza el método getElementById para escribir el resultado5.

Solución JSFidle – Codepen

Explicación: 1.Creamos el párrafo con el nuevo id 2.Creamos la variable IVA y le
damos el valor 1.21 (para que luego haga el múltiplo sumatorio del 21%)
3.Cambiamos la variable total original a subtotal 4.Creamos la nueva variable
total como la multiplicación de las otras dos variables, subtotal * iva
Escribimos con getElementById().innerHTML = el valor con IVA

ALCANCE O ÁMBITO DE UNA VARIABLE

Una variable es local normalmente en cualquier lugar en la que aparece acotada
por llaves.

Se pueden tener una variable global y local que se llamen igual, pero no es
recomendable, porque induce a confusión y hace más complejo trabajar con ellas.

OPERADORES

Los operadores son instrumentos básicos para realizar operaciones en cualquier
lenguaje de programación.

Recuerda que en Javascript el operador = se utiliza para la asignación
de valor a una variable.

Operadores aritméticos

Los operadores aritméticos sirven para realizar manipulaciones matemáticas sobre
el valor de las variables numéricas.

Un operador aritmético siempre dará como resultado un número.

Vamos a realizar algunos ejercicios para conocer su funcionamiento:

Suma (JSFidle) – Codepen. A partir de este código, realiza la suma de dos
variables. [Solución JSFidle – Codepen]
Multiplicación y división(JsFidle) – Codepen. A partir de este ejemplo: a)
Inicializa las dos variables dándoles un valor numérico. b) Crea una
tercera variable y asígnale un valor. c) Escribe sobre este texto el
resultado de multiplicar x * y, y dividir el resultado por la tercera
variable. [Solución JsFidle – Codepen]
Incremento y disminución (JsFidle) – Codepen. El incremento y disminución
sirven para aumentar o disminuir un número dado. Sobre el ejemplo, vamos a
restar de nuevo, con el operador de disminución para que se vuelva a quedar
la variable en 5. a) Crea un nuevo párrafo con id “disminución”; b) utiiza

https://jsfiddle.net/gertrudix/orbmt32f/12/
https://codepen.io/gertrudix/pen/ogbpQjN
https://jsfiddle.net/gertrudix/mektL3nu/
https://codepen.io/gertrudix/pen/NPxXEGa
https://jsfiddle.net/gertrudix/mektL3nu/2/
https://codepen.io/gertrudix/pen/azdEQvr
https://jsfiddle.net/gertrudix/5xLLbkek/
https://codepen.io/gertrudix/pen/YPwYRww
https://jsfiddle.net/gertrudix/5xLLbkek/2/
https://codepen.io/gertrudix/pen/zxrpMrb
https://jsfiddle.net/gertrudix/a5o07731/
https://codepen.io/gertrudix/pen/qEbpQZW

el operado de dismunición para x; c) crea una nueva variable que asigne el
valor a x; d) escribe el resultado en el párrafo disminución. [Solución
JSFidle – Codepen]

Operadores aritméticos combinados con operador de asignación.

Los operadores aritméticos se pueden combinar con el operador de asignación.

En este enlace del tutorial JS del W3School puedes profundizar en cómo funcionan
el reto de operadores aritméticos.

Operadores relacionales y condicionales

Los operadores condicionales o relacionales permiten comparar números y son
esenciales para realizar aplicaciones complejas que se basen en el cumplimiento
de condiciones

Un operador relacional siempre dará como resultado un valor booleano.

Veamos algunos ejemplos de operadores relacionales:

Igual a ==. Hace una comparativa entre una sentencia y el valor esperado.
Si el valor es cierto, dará como resultado «true»; en caso contrario,
indicará «false».
Igual valor e igual tipo ===. Como en el anterior, hace una comparativa
entre una sentencia y el valor esperado, pero en este caso solo dará «true»
si es igual el valor y el tipo de dato; en caso contrario dará «false». Por
ejemplo, el valor 12 (number) y «12» (string) darían false porque son igual
valor pero distinto tipo.

Operadores lógicos

Los operadores relacionales sirven para realizar operaciones lógicas de
comparación y se utilizan para tomar decisiones en los scripts.

Se utilizan valores booleanos, por lo que un operador relacional siempre dará
como resultado un valor booleano.

Los operadores lógicos son:

Negación lógica
AND (&&)
OR (||)

Se pone el ! Delante del nombre de la variable. Retorna falso para
sentencias verdaderas y verdadero para sentencias falsas. Para qué se
usa: Cuando se necesitan evaluar expresiones complejas, y se usan tablas
de verdad, con el fin de evitar incluir muchas sentencias con if
anidados (permiten agrupar sentencias)

Operación lógica AND: Combina dos valores boolenaos que compara. Es
verdad si los dos valores son verdad

Operación lógica OR: Combina dos valores boolenaos que compara. Es

https://jsfiddle.net/gertrudix/a5o07731/3
https://jsfiddle.net/gertrudix/a5o07731/3
https://codepen.io/gertrudix/pen/OPMzaNm
https://www.w3schools.com/js/js_arithmetic.asp
https://jsfiddle.net/gertrudix/L40xL4hL/2/
https://jsfiddle.net/gertrudix/sutyws4k/2/
https://www.w3schools.com/js/js_comparisons.asp
https://www.w3schools.com/js/js_comparisons.asp
https://jsfiddle.net/gertrudix/819u6euw/1/
https://jsfiddle.net/gertrudix/9ch9keaL/
https://jsfiddle.net/gertrudix/onoLs4t0/2/

verdad si uno de los valores es verdad

CONCEPTOS DE POO

La POO (Programación Orientada a Objetos) es un paradigma de programación que
permite optimizar los procesos de programación y los resultados que se obtienen
con ellos. Permite pre-diseñar objetos que son almacenados en librerías o
bibliotecas para que puedan ser reutilizados por los programas sin necesidad de
tener que volver a escribir las funciones necesarias cada vez que se quiere
hacer uso de ellas.

Javascript es uno de los muchos lenguajes que funcionan bajo este paradigma.
Dentro de las dos corrientes existentes (basarse en clases o basarse en
prototipos), JS corresponde al modelo basado en prototipos en el que solo hay
objetos. Otros lenguajes similares en este sentido, muy utilizados actualmente,
son Python y Ruby.

Elementos fundamentales

Los elementos fundamentales de la POO incorporan un número amplio de componentes
(clase, herencia, objeto, método..), pero nos centraremos solo en los que
resultan fundamentales para manejarnos en el entorno de trabajo de un proyecto
periodístico

Objetos
Eventos
Funciones
Métodos

Objetos

Un objeto es una entidad definida por un estado, caracterizado por un conjunto
de atributos que toman valores (datos) concretos, un comportamiento definido por
los métodos, operaciones o mecanismos de interacción que pueden realizarse sobre
él, y una identidad que le diferencia del resto (un identificador).

Eventos

Los eventos son sucesos, producidos normalmente por una acción del usuario, que
producen algún efecto. Por ejemplo, cuando un usuario pulsa un botón o hace clic
sobre un enlace.

Algunos de los eventos DOM más habituales son:

Veamos un par de ejemplos para entender cómo funcionan:

– Onload. Lanza un comportamiento cuando se ha cargado la página completamente.

– Onmouseover – (ver en Codepen). Cuando pasamos por encima de un elemento, se

https://jsfiddle.net/gertrudix/fy70hq49/
https://jsfiddle.net/gertrudix/54j726os/12/
https://codepen.io/gertrudix/pen/dPGJQxW

lanza el comportamiento.

Hay muchos otros eventos como el blur que es cuando se dispara el evento al
perder el foco un elemento, o On Keyup que ejecuta el evento cuando el usuario
suelta una tecla.

Aquí puedes ver un ejemplo del funcionamiento de onkeyup, (Ver en Codepen) que
se utiliza en muchas ocasiones para modificar los datos de entrada en un
formulario. En este caso, transforma las letras minúsculas en mayúsculas.
En este ejemplo, usamos también onkeyup pero para contar el número de caracteres
que introducimos en un input.

Todo evento lleva asociado, normalmente, una función.

Las funciones son fragmentos de código que realizan alguna acción cuando son
invocadas por un evento. Por ejemplo, cuando el usuario pulsa el botón, y sucede
algo.

Visto en código, y explicado, sería esto:

LIBRERÍAS Y APIS

LIBRERÍAS Y APIS: ¿QUÉ SON Y CÓMO SE
RELACIONAN?

Estos dos conceptos van de la mano. Una librería es un conjunto de funciones y
comportamientos listos para usar, y una API son las instrucciones que nos
indican cómo usar esas funciones dentro de nuestro propio código.

¿Qué es una librería?
Una librería o biblioteca es un conjunto de código que alguien ya ha escrito y
organizado para resolver tareas comunes. En otras palabras: es una colección de
funciones que podemos “importar” a nuestro programa para no tener que
escribirlas desde cero.

Por ejemplo, hay librerías para crear gráficos, manipular fechas o mostrar
mapas. En lugar de programar todo eso tú mismo, usas la librería.

¿Qué es una API?
Una API (Application Programming Interface) es el manual de uso de una librería
o servicio. Te explica qué funciones existen, qué datos necesitan y qué
resultados devuelven.

Podemos pensar en una cafetera Nespresso como una librería (el sistema para
hacer café) y en su libro de instrucciones como la API: te indica cómo preparar

https://jsfiddle.net/gertrudix/z3arb58b/
https://codepen.io/gertrudix/pen/MYKrZgN
https://codepen.io/gertrudix/pen/RNrxENx
http://www.4rsoluciones.com/blog/framework-sdk-biblioteca-api-cuales-son-las-diferencias-2/
http://blogginzenith.zenithmedia.es/que-es-y-como-funciona-una-api-diczionario/

cada tipo de café y qué botones pulsar.

Las APIs permiten que distintos programas “hablen entre sí”. Por eso son tan
útiles cuando queremos conectar, por ejemplo, nuestro sitio web con Google Maps
o Twitter.

Ventajas de usar Librerías y APIs

Trabajar con librerías y APIs ahorra tiempo y esfuerzo. En lugar de escribir
miles de líneas de código, aprovechamos soluciones ya creadas y probadas.

Por ejemplo, con la librería de Google Maps podemos dibujar mapas, añadir
marcadores o calcular rutas sin necesidad de programar la lógica desde cero.
Solo seguimos las instrucciones de su API.

Las librerías contienen las funciones.
Las APIs explican cómo usarlas.
Nosotros solo tenemos que “llamarlas” desde nuestro programa.

API Keys
Para acceder a la mayoría de las APIs necesitamos una API Key, una clave de
autenticación que identifica nuestra aplicación y limita su uso.

Esto permite:

Controlar cuántas veces se usa el servicio.
Evitar abusos o accesos no autorizados.

Cómo obtener la API Key de Google Maps

Entra en la Google API Console.1.
Crea un nuevo proyecto.2.
Asigna un nombre a la clave (no hace falta restringirla para la práctica).3.
Copia la clave de API que te genera Google.4.

En un proyecto real deberías restringir la clave por seguridad (por dominio, IP
o aplicación).

Límites de uso
Casi todas las APIs tienen límites de uso gratuito. Por ejemplo, la Google Maps
API permite un número máximo de llamadas sin coste cada día.

TIPOS DE LIBRERÍAS Y APIS

APIs y librerías útiles para proyectos periodísticos
Estas son algunas de las librerías y APIs más usadas en proyectos de periodismo
de datos e interactivos. Incluyen tanto opciones abiertas como servicios de
Google muy populares.

https://console.developers.google.com/flows/enableapi?apiid=geocoding_backend&keyType=SERVER_SIDE&reusekey=true&hl=es-419&pli=1
https://developers.google.com/maps/documentation/geocoding/usage-limits?hl=es-419
https://developers.google.com/maps/documentation/geocoding/usage-limits?hl=es-419

APIs y librerías para proyectos periodísticos
Categoría Librerías / APIs Uso típico

Mapas y geodatos

Leaflet,
MapLibre GL JS,
Google Maps JS API,
Google Geocoding API

Mapas interactivos, rutas,
marcadores y
geocodificación.

Animación
GSAP,
Lottie,
Web Animations API

Scrollytelling, transiciones y
efectos visuales.
Ejemplo de uso de GSAP.
Ejemplo de uso de Lottie.

Visualización de
datos

Google Charts,
D3.js,
Chart.js,
Vega-Lite,
Observable Plot

Gráficos interactivos y
dashboards periodísticos.

DOM y Web APIs
Fetch API,
querySelector,
IntersectionObserver

Cargar datos y manipular
elementos sin dependencias.

Aplicaciones y UI React, Vue, Svelte Componentes y módulos
interactivos reutilizables.

Imágenes y
gráficos base

Canvas API, WebGL,
three.js

Efectos personalizados y
visualización 3D ligera.

Datos y feeds

Papa Parse,
Google Knowledge Graph
API,
fetch en Node

Cargar CSV/JSON, enriquecer
entidades y procesar
datasets.

Contenido
multimedia

YouTube Data API,
Google Photos Library API

Integrar vídeos o galerías
en reportajes interactivos.

Verificación y
noticias

Google Fact Check Tools
API,
NewsAPI,
The Guardian Open
Platform

Fact-checking, titulares y
acceso a artículos.

Consejo: para proyectos abiertos y ligeros, usa Leaflet + Chart.js; si ya
trabajas con Google, combina Maps/Geocoding con Google Charts o D3.js.

ANYCHART

AnyChart

Para trabajar con un ejemplo de librería de gráficos o DataViz, para usar el
Playground de AnyChart.

Nota: Recordad que tenéis que copiar el código o embeber el ejemplo en vuestro
porfolio de JSFiddle o de Codepen para que quede recogido en este.

See the Pen

AnyChart – Donut Chart by gertrudix (@gertrudix)

https://leafletjs.com/
https://maplibre.org/maplibre-gl-js/docs/
https://developers.google.com/maps/documentation/javascript
https://developers.google.com/maps/documentation/geocoding
https://gsap.com/
https://developers.lottiefiles.com/docs/dotlottie-player/dotlottie-web/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Animations_API
https://proyectos.comunicaciondigital.es/files/clases/ejemplo-libreria-gasp.html
https://proyectos.comunicaciondigital.es/files/clases/ejemplo-libreria-lotitie.html
https://developers.google.com/chart
https://d3js.org/
https://www.chartjs.org/
https://vega.github.io/vega-lite/
https://observablehq.com/plot/
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://threejs.org/
https://www.papaparse.com/
https://developers.google.com/knowledge-graph
https://developers.google.com/knowledge-graph
https://nodejs.org/en/learn/getting-started/fetch
https://developers.google.com/youtube/v3
https://developers.google.com/photos
https://toolbox.google.com/factcheck/apis
https://toolbox.google.com/factcheck/apis
https://newsapi.org/docs
https://open-platform.theguardian.com/
https://open-platform.theguardian.com/
https://playground.anychart.com/
https://codepen.io/gertrudix/pen/KwVZbqP
https://codepen.io/gertrudix

on CodePen.

GOOGLE CHART

Google Charts

Google Charts es otro ejemplo de librería completa para realizar visualizaciones
de datos.

Vamos a ver cómo trabajar un ejemplo:

1. Accede a la Galería de gráficos

2. Selecciona el diagrama de Sankey.

3. Copia el código y pégalo en tu JsFiddle. El resultado debería ser similar a
este en JsFidle o en Codepen.

4. Modifica los parámetros para ajustarlo a un modelo de visualización que te
pueda ser útil.

Puedes ver en este ejemplo en Codepen, cómo usar otro set de gráficos de la
librería, con un caso sobre energías renovables.

FUNCIONES. INTRODUCCIÓN

Utilidad

Una función es un bloque de código que puede ser ejecutado cuando es llamada por
un evento

Son muy útiles porque es muy habitual reutilizar código con diferentes
argumentos a lo largo de un programa, por lo que podemos utilizar la función sin
tener que escribir de nuevo el código, sólo invocándola

Nota: Como veremos más adelante, los paréntesis que van detrás del nombre de la
función sirven para pasar parámetros (información) a la función.

Sintaxis

Una función se define del modo siguiente:

¿Cómo se llama a una función?

Para llamar a una función hay que invocarla en cualquier parte de la página web.

https://codepen.io
https://developers.google.com/chart/interactive/docs/gallery
https://developers.google.com/chart/interactive/docs/gallery/sankey
https://jsfiddle.net/gertrudix/a56xgn4o/2/
https://jsfiddle.net/gertrudix/a56xgn4o/2/
https://codepen.io/gertrudix/pen/EaPoGwZ
https://codepen.io/gertrudix/pen/KwVZbyK

Cuando se invoca una función, todo el código que contenga entre llaves {} se
ejecuta

Para invocarla, basta con escribir su nombre seguido de paréntesis

Ejemplos

Veamos un ejemplo explicado para el uso de las funciones.

Ejemplo sencillo en JSFidle o en Codepen. En este caso, la función, llamada
cambiaTexto, escribe en el objeto documento el texto que se pasa como argumento
en el método write.

Ahora podemos hacer una variante escribiendo dentro del script, directamente la
función para invocarla: cambiaTexto(); y se escribirá el texto directamente sin
llamar al botón.

Ejercicio

Vamos a realizar ahora un ejercicio para comprobar cómo opera una función.

Abre https://jsfiddle.net/ o en Codepen1.
Escribe una función llamada escribeConsola2.
Haz que registre, en la consola, el siguiente string o cadena de texto:3.
“Esta es mi primera función que aparece en la consola
Abre la consola para comprobar el resultado4.

Solución en JSFidle o en Codepen

Pasos: 1. Abrimos la consola JS del navegador

2. Escribimos la función

function escribreConsola() { console.log(“Esta es mi primera
función que aparece en la consola”); } 3. La invocamos
escribeConsola()

TRABAJANDO CON FUNCIONES

Vamos a adentrarnos en el uso de funciones. Para ello, vamos a trabajar con la
librería Leaflet, un framework open source, ligero y muy extendido para crear
aplicaciones de mapas web.

Crear un mapa simple incluyendo un marcador
La elaboración de este mapa nos permitirá comprender mejor cómo operan las
funciones con Leaflet.

Vamos a elaborar un mapa sencillo en el que incluiremos un marcador:

Prepara el entorno. En CodePen (o tu HTML), añade las dependencias de1.
Leaflet (CSS y JS). En el HTML crea un contenedor para el mapa, por ejemplo
<div id="map"></div>. En el CSS dale altura (p. ej. #map { height: 420px;

https://jsfiddle.net/gertrudix/yc7n3dc3/
https://codepen.io/gertrudix/pen/GgoyPQY
https://jsfiddle.net/
https://codepen.io/
https://jsfiddle.net/gertrudix/sgnep08t/1/
https://codepen.io/gertrudix/pen/GgoyPxY
https://leafletjs.com/
https://codepen.io/gertrudix/pen/PwZEXBV

}).
Inicializa el mapa y el marcador. En JavaScript:2.

Declara una variable con las coordenadas que centrarán el mapa (lat, lng).a.
Crea el mapa con L.map('map').setView([lat, lng], zoom), y añade una capa baseb.
OSM con L.tileLayer(...) (recuerda la attribution).
Crea un marcador con L.marker([lat, lng]).addTo(map) y añade un .bindPopup()c.
si quieres contenido emergente.

En la documentación oficial de Leaflet tienes un Quick Start muy claro con estos
pasos.

Ejercicio

Sobre el ejemplo anterior, cambia el mapa para que:

Se centre en el Campus de Móstoles de la URJC (zoom 15)
(lat: 40.3367965478043, lng: -3.874826431274414)
Incluya un marcador en dicho Campus
Incluya un segundo marcador en el Hospital Rey Juan Carlos (lat:
40.338759259710955, lng: -3.8707923889160156)

Solución: Como suele ser habitual, podemos resolverlo de varias maneras:

a) Solución 1. Creando una nueva variable para la segunda localización y
pasándola al constructor de L.marker().

b) Solución 2. Pasando directamente la latitud y longitud en el L.marker([lat,
lng]) del segundo marcador.

Parámetros en funciones
Los parámetros son los valores de entrada que recibe una función. Se indican
entre paréntesis detrás del nombre de la función. Adaptaremos los ejemplos al
contexto de Leaflet.

Parámetros simples

En este ejemplo con un parámetro simple:

Escribimos una función que recibe un texto y devuelve un popup listo para1.
usar: por ejemplo, function popupTexto(t) { return L.popup().setContent(t);
}
Al crear el marcador, encadenamos .bindPopup(popupTexto('Hola, Móstoles')).2.
Invocamos la función pasando el valor (el mensaje) que deseamos mostrar.3.

Múltiples parámetros

Habitualmente las funciones llevan varios parámetros. En Leaflet, una función
puede construir un elemento del mapa con propiedades distintas. Por ejemplo, en
este ejemplo se crea un circleMarker con múltiples parámetros:

Creamos la función creaPunto(lat, lng, texto, color) que devuelve un1.
L.circleMarker([lat,lng], { color }) con .bindPopup(texto).
Declaramos las variables con los valores a pasar.2.
Invocamos la función con cada conjunto de parámetros que queramos3.
(coordenadas, texto del popup y color del punto).

https://leafletjs.com/examples/quick-start/
https://codepen.io/gertrudix/pen/PwZEXdL
https://codepen.io/gertrudix/pen/yyepGRO
https://codepen.io/gertrudix/pen/qEbpLJp
https://codepen.io/gertrudix/pen/jEWYXQP

Ejercicio con parámetros múltiples 1Sobre la base del ejemplo anterior, pasa
ahora tres parámetros: además del texto y el color, pasa el radio del
circleMarker para controlar su tamaño.

Solución

1. Añade el parámetro radio en la función ·
2. En las opciones del circleMarker utiliza { color, radius: radio } ·
3. Declara una variable miRadio con un número ·
4. En la invocación pasa el nuevo parámetro.

Grupo Ciberimaginario | Manuel Gertrudix - Alejandro Carbonell |
2025/2026 | Esta obra está bajo una Licencia Creative Commons Atribución 4.0
Internacional. Los contenidos citados se ajustan a lo regulado en el art. 32 del TRLPI de
España

https://codepen.io/gertrudix/pen/qEbpLQp
https://www.ciberimaginario.es
http://creativecommons.org/licenses/by/4.0/

